Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(12): e2113877119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35302884

RESUMEN

During continent­continent collision, does the downgoing continental plate underplate far inboard of the collisional boundary or does it subduct steeply into the mantle, and how is this geometry manifested in the mantle flow field? We test conflicting models for these questions for Earth's archetypal continental collision forming the Himalaya and Tibetan Plateau. Air-corrected helium isotope data (3He/4He) from 225 geothermal springs (196 from our group, 29 from the literature) delineate a boundary separating a Himalayan domain of only crustal helium from a Tibetan domain with significant mantle helium. This 1,000-km-long boundary is located close to the Yarlung-Zangbo Suture (YZS) in southern Tibet from 80 to 92°E and is interpreted to overlie the "mantle suture" where cold underplated Indian lithosphere is juxtaposed at >80 km depth against a sub-Tibetan incipiently molten asthenospheric mantle wedge. In southeastern Tibet, the mantle suture lies 100 km south of the YZS, implying delamination of the mantle lithosphere from the Indian crust. This helium-isotopic boundary helps resolve multiple, mutually conflicting seismological interpretations. Our synthesis of the combined data locates the northern limit of Indian underplating beneath Tibet, where the Indian plate bends to steeper dips or breaks off beneath a (likely thin) asthenospheric wedge below Tibetan crust, thereby defining limited underthrusting for the Tibetan continental collision.

2.
Environ Sci Technol ; 50(21): 11539-11548, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27704799

RESUMEN

We applied spectroscopy, microscopy, diffraction, and aqueous chemistry methods to investigate the persistence of metals in water and sediments from the Animas River 13 days after the Gold King Mine spill (August 5, 2015). The Upper Animas River watershed, located in San Juan Colorado, is heavily mineralized and impacted by acid mine drainage, with low pH water and elevated metal concentrations in sediments (108.4 ± 1.8 mg kg-1 Pb, 32.4 ± 0.5 mg kg-1 Cu, 729.6 ± 5.7 mg kg-1 Zn, and 51 314.6 ± 295.4 mg kg-1 Fe). Phosphate and nitrogen species were detected in water and sediment samples from Farmington, New Mexico, an intensive agricultural area downstream from the Animas River, while metal concentrations were low compared to those observed upstream. Solid-phase analyses of sediments suggest that Pb, Cu, and Zn are associated with metal-bearing jarosite and other minerals (e.g., clays, Fe-(oxy)hydroxides). The solubility of jarosite at near-neutral pH and biogeochemical processes occurring downstream could affect the stability of metal-bearing minerals in river sediments. This study contributes relevant information about the association of metal mixtures in a heavy mineralized semiarid region, providing a foundation to better understand long-term metal release in a public and agricultural water supply.


Asunto(s)
Oro , Ríos/química , Monitoreo del Ambiente , Sedimentos Geológicos/química , Metales Pesados , Agua , Contaminantes Químicos del Agua
3.
Sci Total Environ ; 573: 707-715, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27589822

RESUMEN

The monitoring of stable isotopes (δ18O and δ2H) in water can provide a sensitive indicator of water loss by evaporation. We obtained water samples from surface water and groundwater from both the young and old alluvial plains in the central part of the Nile Valley of Egypt. Groundwater is the only source for irrigation in the old alluvial plains while both surface water (River Nile and irrigation canals) and groundwater are used in the young alluvial plain. Results showed different isotopic compositions between each group of samples and hydrologic connections between shallow groundwater and surface water in the young alluvial plain. The δ18O and δ2H relationship of the samples collected from the desert areas of the old alluvial plains below agricultural lands define an evaporation line with a slope of 4.5 and low deuterium excess of <-14‰. These values can be attributed to return flow of irrigation water that has been subjected to evaporative processes, further amplified by intense agricultural practices. Average evaporative losses were estimated to be between 31% and 36%.

4.
Appl Environ Microbiol ; 74(15): 4910-22, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18539788

RESUMEN

The diversity and distribution of a bacterial community from Coffee Pots Hot Spring, a thermal spring in Yellowstone National Park with a temperature range of 39.3 to 74.1 degrees C and pH range of 5.75 to 6.91, were investigated by sequencing cloned PCR products and quantitative PCR (qPCR) of 16S rRNA and metabolic genes. The spring was inhabited by three Aquificae genera--Thermocrinis, Hydrogenobaculum, and Sulfurihydrogenibium--and members of the Alpha-, Beta-, and Gammaproteobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, and candidate division OP5. The in situ chemical affinities were calculated for 41 potential metabolic reactions using measured environmental parameters and a range of hydrogen and oxygen concentrations. Reactions that use oxygen, ferric iron, sulfur, and nitrate as electron acceptors were predicted to be the most energetically favorable, while reactions using sulfate were expected to be less favorable. Samples were screened for genes used in ammonia oxidation (amoA, bacterial gene only), the reductive tricarboxylic acid (rTCA) cycle (aclB), the Calvin cycle (cbbM), sulfate reduction (dsrAB), nitrogen fixation (nifH), nitrite reduction (nirK), and sulfide oxidation (soxEF1) by PCR. Genes for carbon fixation by the rTCA cycle and nitrogen fixation were detected. All aclB sequences were phylogenetically related and spatially correlated to Sulfurihydrogenibium 16S rRNA gene sequences using qPCR (R(2) = 0.99). This result supports the recent finding of citrate cleavage by enzymes other than ATP citrate lyase in the rTCA cycle of the Aquificaceae family. We briefly consider potential biochemical mechanisms that may allow Sulfurihydrogenibium and Thermocrinis to codominate some hydrothermal environments.


Asunto(s)
Bacterias/aislamiento & purificación , Agua Dulce/microbiología , Variación Genética , Manantiales de Aguas Termales/microbiología , ARN Ribosómico/genética , Bacterias/clasificación , Bacterias/genética , Cartilla de ADN , Ambiente , Agua Dulce/química , Manantiales de Aguas Termales/química , Hidrógeno/análisis , Datos de Secuencia Molecular , New Mexico , Oxígeno/análisis , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Temperatura
5.
Environ Microbiol ; 5(11): 1071-86, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14641587

RESUMEN

Lechuguilla Cave is an ancient, deep, oligotrophic subterranean environment that contains an abundance of low-density ferromanganese deposits, the origin of which is uncertain. To assess the possibility that biotic factors may be involved in the production of these deposits and to investigate the nature of the microbial community in these materials, we carried out culture-independent, small subunit ribosomal RNA (SSU rRNA) sequence-based studies from two sites and from manganese and iron enrichment cultures inoculated with ferromanganese deposits from Lechuguilla and Spider Caves. Sequence analysis showed the presence of some organisms whose closest relatives are known iron- and manganese-oxidizing/reducing bacteria, including Hyphomicrobium, Pedomicrobium, Leptospirillum, Stenotrophomonas and Pantoea. The dominant clone types in one site grouped with mesophilic Archaea in both the Crenarchaeota and Euryarchaeota. The second site was dominated almost entirely by lactobacilli. Other clone sequences were most closely related to those of nitrite-oxidizing bacteria, nitrogen-fixing bacteria, actinomycetes and beta- and gamma-Proteobacteria. Geochemical analyses showed a fourfold enrichment of oxidized iron and manganese from bedrock to darkest ferromanganese deposits. These data support our hypothesis that microorganisms may contribute to the formation of manganese and iron oxide-rich deposits and a diverse microbial community is present in these unusual secondary mineral formations.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Biodiversidad , Sedimentos Geológicos/microbiología , Hierro/análisis , Manganeso/análisis , Microbiología del Suelo , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Ribosómico/química , ADN Ribosómico/aislamiento & purificación , Ecosistema , Minerales/análisis , Minerales/química , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...